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1. Introduction
Let wt te [0,1], be a standard, Ft-adapted Brownian motion. Let xt be another, not necessarily

adapted, stochastic process and assume that, in some sense to be specified later

o- (m) (m)

m=l

where the random variables xm are F1 measurable random variables and St(m) are all generalized-
Stratonovich integrable (c.f. definition below). In this note, we give conditions under which

~~~~~t 1

Jx odwt = _(in) St odwt,

o m=l 0
where o denotes generalized Stratonovich integration and the equality is a.s. (cf. lemma 4). We use
the criteria we derive to provide some new relations between Stratonovich and Ogawa integrals which
do not go through an intermediate chaos decomposition as in [1].

The results below are an outgrowth of some extensions of the Ito lemma pointed out in [2],
especially lemma (4.2) there.

We end this introduction with several definitions, adapted mainly from [1] and [3]:

Definition 1 ([3]). Let 0 = 1l < 2 < ... < rn = T, and let Am = sup Iti - tjl. Let Yt be a (not
necessarily adapted) stochastic process, and let

Yk 1 jYd (1.1)
t -t
9k k-i 1k-1

If
n

Yk(w -w n > yS
k=l k Tk-1 An - O

in probability, and the random variable ys does not depend on the particular way in which An - O0 or

on a particular choice of the mesh (Tl,.... ), we call Ys the "generalized Stratonovich integral" of yt,
and we denote it by ys = 1 0o yt odwt. In the sequel, we ommit the word "generalized", and all
Stratonovich integrals in this paper will be generalized integrals.
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Remark: In [1], the author uses a somewhat different definition of o, where Yk in (1.1) is replaced
by

Y'k -Y

'k= 2 '

Those definitions are not equivalent. For remarks concerning this point, cf. the end of section 3.
Definition 2 ([1]). Let Yt be as above, and let qm(t) be a complete orthonormal base in [0,1].

Assume that

k 1 1

( 4 Y's4m(s)d s) J Om(S)dws L- y
m=l 0 k-oo

and moreover, assume that YO does not depend on the particular choice of the family Om(t). Then YO
is defined to be the Ogawa (or symetric) integral of yt, and we denote it by

1

Y= j Y * dws 
0

2. An Apnroximation Lemma

In this section, we prove our main approximation lemma, namely:
Let xt, St(m), m = 1,2... be F 1 measurable stochastic processes, and let x(m), m = 1,2,... be F 1

measurable random variable.
Assume:

Stm) is Stratonovich integrable, I(m) Jsfm) odwA (Al)
0

M_ I
)(M) (m (m) ~ (M)

Let x= x ()S( , then (3E>0) lim E(JIx- x -Mdt)0=O (A2)Let x t
m=l M -) 0

L
- (L) Ax:' (i), (n (L)

Let (M) =(m) I( m ) then lim lim (M) 0 in prob (A3)
m=M+1 M -oo L-o-

Let 0 = 1 <r < <3 ...< :N = 1, and let AN = sup it. - tI.
iJ

Define (m) (m) 
where k(m) is defined as in (1), i.e. IN is the approximation to (m) using the N-esh 

where 'S'k(m) is defined as in (1.1), i.e. IN(m) is the approximation to I(m) using the N-mesh rt ... 'rN.



L

Let >(L) A X x'm)(m) Then
N(M) N

m=M+1

(VL <) JN(O) (L) for any N-mesh t I...C when A N 0 (A4)
N-oo

lim Urn lim lim J L = 0, in probability
M--o N--- L->oo N(M)

The following easily proved lemma is the basis for our later conclusions:

Lemma 1: Assume (Al) -(A5). Then xt is Stratonovich integrable, and

xtodwt = lim J() (2.

Proof. By (A3), J(0)(L) are a Cauchy sequence w.r.t. convergence in probability and therefore they
converge in probability to a limit and the R.H.S. of (2.1) is well defined as this limit is probability.

By definition (1), we therefore have to show that

N

limrn prob (0) = lim prob AWk xk (2.2)
L--oo N--oo k=1.

where Awk A w-w k-l

We will show that:

pL) rob -(L)0 J0
N(O;H (0) (2.3a)

N

lilimim lim [ Wk X kM) JN(O) = 0 in prob (2.3b)
L--o N--oo M--o k=1

and also that

N

lim lim. AWk(Xk -X M) ) = 0 in prob (2.3c)
N- -- M-)oo k=l

Clearly, (2.3) => (2.2). Note that (2.3a) is exactly (A4). To see (2.3b), note that

N N M L N

wk(M) R () Awk[(x )k , 
k=l k=l k'=l k'=l k'= I



N L

Awx =
kX k N(M)

k=1 K=M+1

and (2.3b) follows from (A5).
Finally, to see (2.3c), we will show that

N

3q>0 s.t. lim El Ak(xk X k ) 0 (2.4)
M--,o k=l

from which (2.3c), and therefore (2.2), will follow.

w -w

Let zN = max I -1- I; then, forq = e/q', e as in (A2),
k=1,..N k-tk-1l

NN N

El ,-X )I (Wq< E(zN $Xs XM ) [Ids )q
A· k(xk'Xk /-

k=1 k=1

£ N N k E

rtk-1

For fixed N, the first term in the R.H.S. of (2.5) is finite, being the moment of the maximum (over a
finite number) of finite variance zero mean normal variables, which concludes the proof of the lemma.

We specialize the results of lemma 1 to two important particular cases. The first allows one to
obtain a sort of "Taylor expansion", similar to the one in lemma (4.2) of [2]. The second will allow us
to make connections with the Ogawa integral.

Lemma 2
Let st(m) be Ft-adapated continuous semi-martingales, and let their Doob-Meyer decomposition be:

(m) (m) (+ (m) (m)
t = So At + Mt

where M) is a continuous martingale and A(m) is a continuous bounded variation process.

Let am El/211A(m)ll 2, where II Ii denotes the total variation norm.

(M ( m ) -_m)4

b sup E [ (i)
(t-S) 2



Cm 2 (S ) 2

0

and assume that:

C b2 <~o, c2 m <o a <o (H1)

m=l m=l m=l

mE((x(m))2) < (H2)
m=1

N 1

E I (1 - rkkl)E((s(m))2)- E(s(m))2dtl <c(N), c(N) - O (H3)
m=l k=l- 0

Then xtM converges in Ll(92x[O,1]) (and hence, also in probability), and (A1)-(A5) hold.

Proof. Note that (Al) is trivial here, and that

1i 1 L L

E Ix x Idt < - Ex(m)s(m) I dt < (xm) 2 + E m
t t

0 Om=M+1 m=M+1 m=M+10 m

which, by (H1), (H2) converges to zero as L,M - oo; hence, xtM is a Cauchy sequence in

L l (2Qx[0,l]) and (A2) follows.
Concerning (AS), we write JN(M)L as:

L N N

N(M) -m=M+1 k[( (w T ) + E ( (m (w -w )
k= 1k=l

+ (M( - M(m))(w -W 1W

A -(L) (L)
N(M),1 N(M),2 N(M),3 (2.6)

To show (A.5), it will be enough to show that for j = 1,3,



lim lim lim E IJ(L) I = 0 (2.7)

M-~oo N-~o L- N(M),j

whereas J () converges to zero in probability when the limits are taken in the correct order. Note
N(M),2

that

E[ s(m)(w- w )12= (Tk - 'tkl)E(s )
k=-iktl z k ' k-l k=1k Xkk-

Therefore,

L 1

EIJ(L) < E l/2((m))2 ( E((s(?))2)dt)l/2
N(M), t--

m=M+1 o

L N 1

+ E1 (x ) [ (k k) k- E (s ) E(s(t))2dt ]1/2
m=M+1 k=l O

by (H2), (Hi) and (H3), we obtain therefore that (2.6) holds for j=l.
Turning our attention to j=2, we have:

I (A -Am ) (w -w )I < IIA(m ) 11 (sup Iw -w I)
k=l

Therefore
L L

(L) < ( x(m) IIA(m)11) sup Iw - w I < 2 sup Iw I x(m) IIA(m)II (2.8)
N(M),2 m=M+1 [ k k-1 O<l m+(2.8)

and to show the convergence in probability, note that

L L

I Elx(m)lIIA(m)11 < > El/2((A(m)) 2 ) El/2(x(m)) 2 )

m=M+l m=M+1

L L

< X E(A(m)) 2 + I E((x(m ))2 ) (2.9)

m=M+1 m=M+1

which, by (HI), imply the convergence in probability to 0 of (2.8). Finally, turning to j=3, note that

N(M), L N
El!N(M),3 I ELn(0'2 E , W(M _M(m))(w -w ))2)

m=M+-1k=1 k Tk-1



/2( X (m )E1/2[(M - Mm) (w -w )) 2 2]

m=M+1 k= k 1k

L N
_< Z E1/2(X(m))2 El/4[-M E (m) E1/4 ]4

k El ] [MEk - M m]El 4[w -w
m=M+l k=l k k 'Ck-1

L N M(m)M(m)

z---kk ]4('k- 'k-1 )2

- c Z E2m)2 Z E lN / 4 [

m=M+l k=l (t k - lk-1)1/ 2

L N

< C' E E1/2(X()) bm (k - )2

m=M+l k=l

which, again by H 1 and H2, ensure the convergence to zero (as L -- o first and N -- oo next).
We next note that (A4) holds trivially, since due to the fact that L < oo it is enough to check that for

each (m),

x(m) (m) N-4°x(m)I(m) in probability

(mjn prob I(m) since (i)
which clearly holds since I I(m) since s is adapted.

No°

We finally check A3. Note that, by using the fact that I(m) is an adapted integral,

LX-L |1/2 (m) 2 1/2 1(m) 2
E( - )(c b) E (X (m)) (2.10)

m=M+1

L
< h (Cm2+ b2, 1/2 E1/2(x(m))2

m--M+l

which, by HI, H2 converges to zero when M, t -- oo. The lemma is proved.
The following variant of lemma 2 is useful in the comparison with the Ogawa integral:

Lemma 3
Let (HI) - (H3) in Lemma 2 be replaced by:

cm <K, am <K, bm <K (HI')

1 E/2((x(m))2) < 00 (H2')
m=l



N

E ( k-1) E(S(m))2 < K 
k=l k- 

M

then again x t= lim (I X( s(t )) exists (in L 1(K2x[0,1])) and (A1-AS) still hold.
m--o> M=1

Proof: Repeat the proof of lemma 2, and note that in (2.7), (2.9), (2.10), (Hi') and (H3') are still
enough for convergence.

3. A Relation Between the Ogawa and the Stratonovich Integrals

In this section, we propose conditions under which the Stratonovich and Ogawa integrals both exit
and coincide; there conditions unlike those in [1], [4] and references there do not make use of
Malliavin-type calculus.

Let qn be any continuous, uniformly bounded orthonormal base of L2[0,1]. We claim:

Lemma 4
1 1

Assume that E ) <o, where Yk i Ok(t)ytdt. Then both the Ogawa and the

k=l o

Stratonovich integrals of Yt exist and they are equal.

Proof. That the Stratonovich integrall exists follows from lemma 3 by taking x(m) = Yk, st(m) =

Pm . That it is equal to the construction of the Ogawa integral for the basis O)m is clear from definition
2, for

1 1 1

E( ' E k k()dWS) E(Ykyk' Jk(s)dws Ok(s)dw (S)dws
k=M+l 0 k,k'=M+l o O

1 1

m 2X (1+- ) (-+1) ( -+1) -+ 1)

< +, E 2 ((Yk Yk') (E k (s)dw

kk'=M+l 0 0

Note that fI0 k(s)dws are i.i.d. N(0,1) random variable. Therefore, we get:

1m1 1

E( J Yk qk(S)dws) < K E 2+e (y(2+E)) B-2+c 2+
M+1 0O kk=M+L

M+1 0 k,k'=M+l



=K Z E 2+ e (y2+) 2 (3.1)
k=M+l

1

where K does not depend on m; therefore, by our assumption, Yk J 0k(s)dws is a Cauchy sequence
1 0

in L2 (Q), which implies that the sum in definition 2 converges and is therefore equal to the
Stratonovich integral.

We need therefore to prove that the sum of definition 2 does not depend on the particular base
chosen On. Let Yn be another complete base, we therefore have to show that

K K 1 K

A(K) __a Z (Jk( ) dWt + Z (Ok' O) k(t)dwt --( 0 (3.2)
k=l k=l O0 K---o

where (Vk,4) denote the scalar product in L2[0,1].

Let (xnwer ( k21.Lke ,a , where ank = (k' Pn)' I nk = 1 , ank
n=l n=l k=l

Define
K N L 1 K 1

A(K,L,N) = (Xk lk(n,4 - ( ) l dwt - (n ndwt (3.3)
k=l n=l 1=1 O n=l 0

Clearly, A(K) - ) 0 if lim lim lim E(A (K,L,N)) =0; Note that
K--oo K---- N---o L--

A(K,L,N) = L (on,) [ alk 01 dwt - 1ndwt I +
n=l k=l 1=1 0 0

K N L 1

+ X X (on', ) ank 1k J>1 dwt
k=l n=K+l 1=1 0

K N N

__ (n, ) tB(nkL) + (n, &)D(n,KL) -= A1(K,L) + A 2(K,L,N) (3.4)
n=l k=1 n=K+l

and we need to check the convergence of Ai(K,L,N), i = 1,2.
For A 1(K,L), one has



K

E(A,(K,L)) = E[ll (), 5) ( B(n,k,L))1]2

n=1 k=l

K K K K

=E (O)n' I) (n", 4) (_ B(n,k,L))( Z B(n',k,L))
n=l n'=l k-l k=l

< I2 E2+e ((n ' ) )2+ E2 + (()E n ' , )2+£) ,
n=l n'=1

6 K 4+2s K 4+2s

E 4+2Q( B(nk,L)) E 4+2s e B(n',k,L)) 6

k=l k=l

K 1 4+28

= (· E2+ ( ) 2+)) E 4+2:( B(n,k,L)) £ )2
n=1 k=l

(3.5)

Note that B(n,KL) is a Gaussian r.v., mean zero, and

K

lim E(B(n,K,L))2 = 1 - ank (3.6)
L--Oo k=1

Therefore,
K 1

lim E(A1 (K,L,N)) < C (e)l E2+ e ((¢, V)2+) ((1 n )/ 2 2 K
L---o n=1 k=l1

Turning to A2(K,L,N), note that D(n,K,L) is again a Gaussian r.v., mean zero and

K

lim E(D (n, K,L)) = nk (3.7)
L--oo k=l

and therefore, repeating the computations above, one has:

lim E(A2(K,L,N)) <_ c(£) 21 E( 2+)n, 4)2+£ (3.8)
L- n=K+1 E2 + k=1 n=K+1

and, from (3.8) and our conditions in the statement of the lemma, we again get the required
convergence, which completes the proof of the lemma.
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